
N. Aillery
C. Marais

Orange
August 30, 2016

OpenID Connect User Questioning API 1.0
draft-user-questioning-api-01

Abstract
This specification defines a specific endpoint used by a Client (i.e. Service Provider) in order to question a End-
User and get his Statement (i.e. his answer).

Table of Contents
1. Introduction

1.1. Requirements Notation and Conventions
1.2. Terminology
1.3. Overview
1.4. Example of use cases involving the User Questioning API

2. Question Object
2.1. error_info SubObject
2.2. error_code
2.3. status
2.4. user_id_type

3. User Questioning flows
3.1. Pulled-By-Client Flow

3.1.1. Pulled-By-Client Flow steps
3.1.2. User Questioning Endpoint

3.1.2.1. (1a) User Questioning Request
3.1.2.1.1. Example with an access_token tied with a specific End-User
3.1.2.1.2. Example with an access_token NOT tied with a specific End-User

3.1.2.2. (1b) Question Created
3.1.2.2.1. Example with an access_token tied with a specific End-User
3.1.2.2.2. Example with an access_token not tied with a specific End-User

3.1.2.3. (2a) User interactions to get the Questioned User's Statement
3.1.2.4. (3a) Get User Questioning Response

3.1.2.4.1. Example not using If-None-Match header
3.1.2.4.2. Example using If-None-Match header

3.1.2.5. (3b) User Questioning Response
3.1.2.5.1. Example with PENDING status and no If-None-Match header in the User Questioning
Request
3.1.2.5.2. Example with PENDING status and a If-None-Match header in the User Questioning
Request
3.1.2.5.3. Example with ACCEPTED status
3.1.2.5.4. Example with DENIED status

3.2. Pushed-To-Client Flow
3.2.1. Pushed-To-Client Flow Steps
3.2.2. User Questioning Endpoint

3.2.2.1. (1a) User Questioning Request
3.2.2.1.1. Example with an access_token tied with a specific End-User
3.2.2.1.2. Example with an access_token NOT tied with a specific End-User

3.2.2.2. (1b) Question Created
3.2.2.2.1. Example with an access_token tied with a specific End-User
3.2.2.2.2. Example with an access_token not tied with a specific End-User

3.2.2.3. (2a) User interactions to get the Questioned User's Statement
3.2.3. Client Notification Endpoint

3.2.3.1. (3a) User Questioning Response
3.2.3.1.1. Example with ACCEPTED status
3.2.3.1.2. Example with DENIED status

3.2.3.2. (3b) Acknowledgement
3.2.3.2.1. Example of the simplest acknowledgement

3.3. Terminated-By-Client Flow
3.3.1. Terminated-By-Client Flow steps
3.3.2. User Questioning Endpoint

3.3.2.1. (1a) User Questioning Request
3.3.2.1.1. Example with an access_token tied with a specific End-User
3.3.2.1.2. Example with an access_token NOT tied with a specific End-User

3.3.2.2. (1b) Question Created
3.3.2.2.1. Example with an access_token tied with a specific End-User
3.3.2.2.2. Example with an access_token not tied with a specific End-User

3.3.2.3. (2a) User interactions to get the Questioned User's Statement
3.3.2.4. (2b) User Questioning Endpoint Sends Verification_code to Questioned User
3.3.2.5. (2c) Questioned User Sends Verification_code to Client
3.3.2.6. (3a) Client Sends Verification_code to User Questioning Endpoint

3.3.2.6.1. Example
3.3.2.7. (3b) User Questioning Response

3.3.2.7.1. Example of Accepted Statement
3.3.2.7.2. Example of Denied Statement

4. Errors
4.1. Example with ERROR status in a response to Client
4.2. Example with ERROR status in a request to Client

5. Security Considerations
6. Privacy Considerations
7. IANA Considerations
8. Normative References
Appendix A. Acknowledgements
Appendix B. Notices
Appendix C. Document History
Authors' Addresses

1. Introduction
This specification defines a specific endpoint used by a Client (i.e. Service Provider) in order to question a End-
User and get his Statement (i.e. his answer).

This endpoint is specified as an OAuth 2.0-protected Resource Server accessible with an Access Token.

The way the Access Token has been obtained by the Client is out of scope of this specification.

Whether the End-User is currently using the Client or not is also out of scope of this specification.

The User Questioning API is an asynchronous API. There are 3 main ways to get the End-User's Statement: the
first one requires some polling of the API, the second requires the Client to expose a callback endpoint and the
third one requires a user interaction on the Client.

1.1. Requirements Notation and Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Throughout this document, values are quoted to indicate that they are to be taken literally. When using these
values in protocol messages, the quotes MUST NOT be used as part of the value.

1.2. Terminology
This specification uses the terms "Access Token", "Resource Server", and "Client" defined by OAuth 2.0
[RFC6749]. This specification also defines the following terms:

Questioned User
End-User receiving the question and requested to give his Statement.

1.3. Overview
The User Questioning protocol, in abstract, follows the following steps.

1.
The Client sends a User Questioning Request to the OpenID Provider (OP).

2.
The OP interacts with the Questioned User and obtains his Statement.

3.
The OP responds to the Client with a User Questioning Response.

These steps are illustrated in the following diagram:

+--------+ +--------+
	----(1) User Questioning Request-------------->			
	+--------+			
Client		End-	<--(2) User interactions to get--->	OP
		User	the Questioned User's Statement	
	+--------+			
	<----(3) User Questioning Response-------------			
+--------+ +--------+

1.4. Example of use cases involving the User Questioning API
The following use cases are non-normative examples to illustrate the usage of the User Questioning API by a
Client.

1.
The Client can be a bank and the User Questioning API is used to challenge the End-User when he wants
to pay on Internet in order to secure the transaction.. This is similar to 3D-Secure. The question could be:
"Do you allow a payment of XXX euros to XXX?".

2.
The Client can be a bank and the User Questioning API is used to challenge the End-User when he wants
to add a new beneficiary for a bank transfer. The question could be: "Do you allow XXX to be added to
your beneficiaries?".

3.
The Client can be a drive-in food market and the User Questioning API is used to ask the End-User if he
accepts the exchange of one missing product by another. The question could be: "Do you agree to get
product XXX instead of product XXX?".

4.
The Client can be a ticketing plateform and the User Questioning API is used to prevent transactions by
bots. The question could be: "Do you confirm that you are currently booking a ticket?".

5.
The Client can be an airline company and the User Questioning API is used to be sure that the End-User
is notified of a delay. The question could be: "Your flight is postponed. Can you confirm that you are
aware?".

2. Question Object
Here after is described the Question object :

Member Type Description Example

id string Unique identifier of the Question 984dcc7d-3d4d-4b0f-9f80-
22e344f9a956

status string Status code of the Question (note that
Error codes are handled by the HTTP
protocol) Possible values are described in
Section 2.3.

PENDING

creation_date timestamp Date indicating when the User Questioning
Request has been received by the OP. Its
value is a JSON number representing the
number of seconds from 1970-01-
01T0:0:0Z as measured in UTC until the
date/time.

1311281970

last_modification_date timestamp Date indicating the last change of the
status. Its value is a JSON number
representing the number of seconds from
1970-01-01T0:0:0Z as measured in UTC
until the date/time.

1311281970

statement_date timestamp Date indicating when the End-User gave
his Statement on the Question. Its value is
a JSON number representing the number
of seconds from 1970-01-01T0:0:0Z as
measured in UTC until the date/time.

1311282970

user_id string Unique identifier allowing to identify the
Questioned User (e.g. Mobile phone ,
PCR). Ignored if the Access Token is tied
with a specific End-User, mandatory
otherwise.

3444975f-1137-47dc-908f-
942ac85ab98f

user_id_type string Indicate the type of the End-User's
identifier used for User Questioning.
Ignored if the Access Token is tied with a
specific End-User, mandatory otherwise.
Possible values are described in Section
2.4.

MSISDN

question_to_display string Question to be displayed to the
Questioned User.

An example message to display

wished_qcr string Questioning context class reference :
Level of Assurance wished by the Client
(can be 2 3 4)

3

used_qcr string Questioning context class reference :
Level of Assurance used by the OP (can
be 2 3 4)

2

wished_qmr string Questioning method wished by the Client SMS_OTP

used_qmr string Questioning method used by the OP for
the User Questioning

SMS_OTP

Question Object Members

client_notification_endpoint uri URL exposed by the Client's backend to
receive a notification from OP when a User
Questioning is finished (accepted, denied,
error...). Needed if the Client wants to use
Pushed-To-Client Flow (See Section 3.2).

https://client.example.com/questions

verification_code string Unique code collected by the Client and
verified by the OP to allow implementing a
One Time Password as a User
Questioning method (Optional: only
needed if OTP is used as a validator. So
only if the reponse to POST of an User
Questioning Request was responded by a
Question Object with a
status=VERIFICATION_CODE_NEEDED.)

12345

error_info JSON
Object

(Optional). Only present if status is
ERROR. See Section 2.1.

{"error_code":"unknown_user"}

Member Type Description Example

2.1. error_info SubObject
error_info is an optional member of the Question Object which contains the following properties :

error_info properties

Value Description Example

error_code REQUIRED. Code representing the error. See
section Section 2.2 for possible values.

unknown_user

error_description OPTIONAL. Human-readable ASCII encoded text
description of the error.

The user is unknown

error_uri OPTIONAL. URI of a web page that includes
additional information about the error.

https://server.example.com/errors/unknown_user

2.2. error_code
error_code is a property of the error_info Object. It can takes the following values :

error_code possible values

Value Description

unknown_user The Questioned User is unknown.

timeout The User Questioning has expired (timeout - no action from Questioned User)

verification_code_failed The verification_code provided was not correct.

verification_code_too_many_tries The verification_code has already been check without success several times (the
number of time is up to the OP).

2.3. status
status member can take the following values :

status possible values

Value Description

ACCEPTED This status name is returned when the Questioned User's Statement is an
acceptation.

DENIED This status name is returned when the Questioned User's Statement is a deny.

ERROR This status name is an error is detected by the OP. (Error number is provided by the
HTTP return code.). The error_info member will give more details concerning the
error See Section 2.1.

PENDING This status name is returned when the User Questioning is ongoing.

VERIFICATION_CODE_NEEDED This status name is returned when a verification_code is required to be requested by
the Client to the Questioned User.

2.4. user_id_type
user_id_type member can take the following values :

user_id_type possible values

Value Description Example

MSISDN Represents the Mobile Phone number corresponding to the Questioned User. The way
this MSISDN has been captured by the Client is out of scope of this specification.

33612345678

PCR Represents the PCR corresponding to the Questioned User. The way this PCR has
been captured by the Client is out of scope of this specification.

8d858e0a-c91b-
426a-92e8-
462d3876df7d

3. User Questioning flows
This document specifies three User Questioning flows:

Pulled-By-Client flow:
In this flow, after the User Questioning Request, the Client must call the OP in order to get the User
Questioning Response. Refer to Section 3.1 for more details.

Pushed-To-Client flow:
In this flow, after the User Questioning Request, the OP calls the Client to deliver the User Questioning
Response. Refer to Section 3.2 for more details.

Terminated-By-Client flow:
In this flow, after the User Questioning Request, the Client must call the OP with an additional
verification_code in order to get the User Questioning Response. Refer to Section 3.3 for more details.

The flow to use is decided by the OP and depends on the User Questioning Request and the available User
Questioning mechanisms:

Pulled-By-Client flow:
If the Client does not include a client_notification_endpoint in the User Questioning Request and if the
User Questioning mechanism selected by the OP does not require additional information from the Client
(e.g. verification_code). Refer to Section 3.1 for more details.

Pushed-To-Client flow:
If the Client includes a client_notification_endpoint in the User Questioning Request and if the User
Questioning mechanism selected by the OP does not require additional information from the Client (e.g.
verification_code). Refer to Section 3.2 for more details.

Terminated-By-Client flow:
If the User Questioning mechanism selected by the OP requires additional information from the Client

(e.g. verification_code). Refer to Section 3.3 for more details.

3.1. Pulled-By-Client Flow
In this flow, the Client MUST NOT include a client_notification_endpoint in the User Questioning Request. The
Client will poll the OP until the User Questioning is finished (accepted, denied, error...).

If a verification_code is needed for the mecanism chosen by the OP, the flow will be the Terminated-By-Client
Flow (cf. Section 3.3).

3.1.1. Pulled-By-Client Flow steps

+--------+ +--------+
	---(1a) User Questioning Request-------------->			
	<--(1b) Question Created-----------------------			
	+--------+			
Client		End-	<--(2a) User interactions to get-->	OP
		User	the Questioned User's Statement	
	+--------+			
	--(3a) Get User Questioning Response---------->			
	<---(3b) User Questioning Response-------------			
+--------+ +--------+

3.1.2. User Questioning Endpoint

3.1.2.1. (1a) User Questioning Request
The Client sends the User Questioning Request using HTTP POST.

The Access Token obtained from an OAuth Authorization request MUST be sent as a Bearer Token.

The User Questioning Request MUST contain a Question object in the request body, with the following attributes.

Attribute name Presence

user_id FORBIDDEN if the access_token is tied with a End-User, MANDATORY if the
access_token is not tied with a End-User

user_id_type FORBIDDEN if the access_token is tied with a End-User, MANDATORY if the
access_token is not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

wished_qmr OPTIONAL

client_notification_endpoint FORBIDDEN

...any other... IGNORED

3.1.2.1.1. Example with an access_token tied with a specific End-User
This example describes a context where the access_token is tied with a specific End-User. The Client MAY add
user_id and user_id_type in the request, but they will be ignored.

The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.example.com
Content-Type: application/json
Accept: application/json
Authorization: Bearer SlAV32hkKG

{
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.1.2.1.2. Example with an access_token NOT tied with a specific End-User
This example describes a context where the access_token is not tied with a specific End-User. The Client MUST
add user_id and user_id_type in the request.

The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.example.com
Content-Type: application/json
Accept: application/json
Authorization: Bearer SlAV32hkKG

{
 "user_id":"33612345678",
 "user_id_type":"MSISDN",
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.1.2.2. (1b) Question Created
The Client receives the created Question object in a HTTP 201 Created response.

The Question object is contained in the response body, with the following attributes.

Attribute name Presence

id MANDATORY

status MANDATORY

creation_date MANDATORY

last_modification_date MANDATORY

user_id OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token is
not tied with a End-User

user_id_type OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token is
not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

wished_qmr OPTIONAL

...any other... FORBIDDEN

In this flow, there are three possible status (cf. Section 2.3) in the Question object received:

{"status":"PENDING"}
This is the temporary status when the User Questioning Response is not ready.

{"status":"VERIFICATION_CODE_NEEDED"}
This is a temporary status when an additional verification_code is required.

If the status is VERIFICATION_CODE_NEEDED, then the current flow is the Terminated-By-Client Flow
(Section 3.3).

{"status":"ERROR"}
This is the final status when there is an error. Refer to Section 4 for more details.

3.1.2.2.1. Example with an access_token tied with a specific End-User
The following is a non-normative example.

HTTP/1.1 201 Created
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"PENDING",
 "creation_date":"1311281970",
 "last_modification_date":"1311281970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.1.2.2.2. Example with an access_token not tied with a specific End-User
The following is a non-normative example.

HTTP/1.1 201 Created
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"PENDING",
 "creation_date":"1311281970",
 "last_modification_date":"1311281970",
 "user_id":"33612345678",
 "user_id_type":"MSISDN",
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.1.2.3. (2a) User interactions to get the Questioned User's Statement
The way the User Questioning Endpoint obtains the Questioned User's Statement for the Question is out of the
scope of this specification.

3.1.2.4. (3a) Get User Questioning Response
The Client get the User Questioning Response using HTTP GET.

The Access Token obtained from an OAuth Authorization request MUST be sent as a Bearer Token.

The Question object is associated with an Etag. When the object is modified, the associated Etag MUST be
modified too. In order to detect a status change, the Client CAN either request the Question object or, by using
the If-None-Match, request the modified Question object.

The If-None-Match header contains the Etag. If the Question object has not been modified, the OP responds with
HTTP 304 code.

3.1.2.4.1. Example not using If-None-Match header
If the User Questioning Response is not finished, not using the If-None-Match header enables to receive a HTTP
200 code with the current Question object including a PENDING status.

The following is a non-normative example.

GET /questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c HTTP/1.1
Host: server.example.com
Accept: application/json
Authorization: Bearer SlAV32hkKG

3.1.2.4.2. Example using If-None-Match header
If the User Questioning Response is not finished, the If-None-Match header enables to receive a HTTP 304
code, instead of the current Question object including a PENDING status.

The following is a non-normative example.

GET /questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c HTTP/1.1
Host: server.example.com
Accept: application/json
Authorization: Bearer SlAV32hkKG
If-None-Match: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

3.1.2.5. (3b) User Questioning Response
The Client receives the created User Questioning Response in a HTTP 200 OK response.

The User Questioning Response MUST contain a Question object in the request body, with the following
attributes.

Attribute name Presence

id MANDATORY

status MANDATORY

creation_date MANDATORY

last_modification_date MANDATORY

statement_date FORDIDDEN if status is PENDING, MANDATORY if the status is ACCEPTED or DENIED.

user_id OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token is
not tied with a End-User

user_id_type OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token is
not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

wished_qmr OPTIONAL

used_qcr FORDIDDEN if status is PENDING or ERROR, MANDATORY if the status is ACCEPTED or
DENIED.

used_qmr FORDIDDEN if status is PENDING or ERROR, MANDATORY if the status is ACCEPTED or
DENIED.

...any other... FORBIDDEN

Attribute name Presence

In this flow, there are four possible status (cf. Section 2.3) in the Question object received:

{"status":"PENDING"}
This is the temporary status when the User Questioning Response is not ready.

{"status":"ACCEPTED"}
This is the final status when the End-User accepted the User Questioning Request.

{"status":"DENIED"}
This is the final status when the End-User denied the User Questioning Request.

{"status":"ERROR"}
This is the final status when there is an error. Refer to Section 4 for more details.

If the If-None-Match header was used in the User Questioning Request, instead of a HTTP 200 code with the
current Question object including a PENDING status, the Client will get a HTTP 304 code and no body.

3.1.2.5.1. Example with PENDING status and no If-None-Match header in the
User Questioning Request

The following is a non-normative example.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"PENDING",
 "creation_date":"1311281970",
 "last_modification_date":"1311281970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.1.2.5.2. Example with PENDING status and a If-None-Match header in the
User Questioning Request

The following is a non-normative example.

HTTP/1.1 304 Not Modified

3.1.2.5.3. Example with ACCEPTED status
The following is a non-normative example.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "5a530eac19fc-9deb-a1ae-49ba-442c8ae3"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"ACCEPTED",
 "creation_date":"1311281970",
 "last_modification_date":"1311282970",
 "statement_date":"1311282970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "used_qcr":"2",
 "used_qmr":"SMS_OTP"
}

3.1.2.5.4. Example with DENIED status
The following is a non-normative example.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "5a530eac19fc-9deb-a1ae-49ba-442c8ae3"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"DENIED",
 "creation_date":"1311281970",
 "last_modification_date":"1311282970",
 "statement_date":"1311282970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "used_qcr":"2",
 "used_qmr":"SMS_OTP"
}

3.2. Pushed-To-Client Flow
In this flow, the Client MUST include a client_notification_endpoint in the User Questioning Request. The Client
will be informed at this endpoint by the OP when the User Questioning is finished (accepted, denied, error...).

If a verification_code is needed for the mecanism chosen by the OP, the flow will be the Terminated-By-Client
Flow (cf. Section 3.3), despite the client_notification_endpoint in the request.

3.2.1. Pushed-To-Client Flow Steps

+--------+ +--------+
	---(1a) User Questioning Request-------------->			
	<--(1b) Question Created-----------------------			
	+--------+			
Client		End-	<--(2a) User interactions to get-->	OP
		User	the Questioned User's Statement	
	+--------+			
	<---(3a) User Questioning Response-------------			
	---(3b) Acknowledgement----------------------->			
+--------+ +--------+

3.2.2. User Questioning Endpoint

3.2.2.1. (1a) User Questioning Request
The Client sends the User Questioning Request using HTTP POST.

The Access Token obtained from an OAuth Authorization request MUST be sent as a Bearer Token.

The User Questioning Request MUST contain a Question object in the request body, with the following attributes.

Attribute name Presence

user_id FORBIDDEN if the access_token is tied with a End-User, MANDATORY if the
access_token is not tied with a End-User

user_id_type FORBIDDEN if the access_token is tied with a End-User, MANDATORY if the
access_token is not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

wished_qmr OPTIONAL

client_notification_endpoint MANDATORY

...any other... IGNORED

3.2.2.1.1. Example with an access_token tied with a specific End-User
This example describes a context where the access_token is tied with a specific End-User. The Client MAY add
user_id and user_id_type in the request, but they will be ignored.

The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.example.com
Content-Type: application/json
Accept: application/json
Authorization: Bearer SlAV32hkKG

{
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "client_notification_endpoint":"https://server.client.com/questions"

}

3.2.2.1.2. Example with an access_token NOT tied with a specific End-User
This example describes a context where the access_token is not tied with a specific End-User. The Client MUST
add user_id and user_id_type in the request.

The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.example.com
Content-Type: application/json
Accept: application/json
Authorization: Bearer SlAV32hkKG

{
 "user_id":"33612345678",
 "user_id_type":"MSISDN",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "client_notification_endpoint":"https://server.client.com/questions"
}

3.2.2.2. (1b) Question Created
The Client receives the created Question object in a HTTP 201 Created response.

The Question object is contained in the response body, with the following attributes.

Attribute name Presence

id MANDATORY

status MANDATORY

creation_date MANDATORY

last_modification_date MANDATORY

user_id OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token
is not tied with a End-User

user_id_type OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token
is not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

wished_qmr OPTIONAL

client_notification_endpoint MANDATORY

...any other... FORBIDDEN

In this flow, there are three possible status (cf. Section 2.3) in the Question object received:

{"status":"PENDING"}
This is the temporary status when the User Questioning Response is not ready.

{"status":"VERIFICATION_CODE_NEEDED"}
This is a temporary status when an additional verification_code is required.

If the status is VERIFICATION_CODE_NEEDED, then the current flow is the Terminated-By-Client Flow

(Section 3.3).

{"status":"ERROR"}
This is the final status when there is an error. Refer to Section 4 for more details.

3.2.2.2.1. Example with an access_token tied with a specific End-User
The following is a non-normative example.

HTTP/1.1 201 Created
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"PENDING",
 "creation_date":"1311281970",
 "last_modification_date":"1311281970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "client_notification_endpoint":"https://server.client.com/questions"
}

3.2.2.2.2. Example with an access_token not tied with a specific End-User
The following is a non-normative example.

HTTP/1.1 201 Created
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"PENDING",
 "creation_date":"1311281970",
 "last_modification_date":"1311281970",
 "user_id":"33612345678",
 "user_id_type":"MSISDN",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "client_notification_endpoint":"https://server.client.com/questions"
}

3.2.2.3. (2a) User interactions to get the Questioned User's Statement
The way the User Questioning Endpoint obtains the Questioned User's Statement for the Question is out of the
scope of this specification.

3.2.3. Client Notification Endpoint

3.2.3.1. (3a) User Questioning Response

The OP sends the User Questioning Response to the Client using HTTP POST.

The User Questioning Response MUST contain a Question object in the request body, with the following
attributes.

Attribute name Presence

id MANDATORY

status MANDATORY

creation_date MANDATORY

last_modification_date MANDATORY

statement_date MANDATORY

user_id OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token
is not tied with a End-User

user_id_type OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token
is not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

used_qcr MANDATORY

used_qmr OPTIONAL

client_notification_endpoint MANDATORY

...any other... IGNORED

In this flow, there are three possible status (cf. Section 2.3) in the User Questioning Response:

{"status":"ACCEPTED"}
This is the final status when the End-User accepted the User Questioning Request.

{"status":"DENIED"}
This is the final status when the End-User denied the User Questioning Request.

{"status":"ERROR"}
This is the final status when there is an error. Refer to Section 4 for more details.

3.2.3.1.1. Example with ACCEPTED status
The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.client.com
Accept: application/json

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"ACCEPTED",
 "creation_date":"1311281970",
 "last_modification_date":"1311282970",
 "statement_date":"1311282970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "used_qcr":"3",
 "used_qmr":"SIM_APPLET",
 "client_notification_endpoint":"https://server.client.com/questions"

}

3.2.3.1.2. Example with DENIED status
The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.client.com
Accept: application/json

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"DENIED",
 "creation_date":"1311281970",
 "last_modification_date":"1311282970",
 "statement_date":"1311282970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "used_qcr":"3",
 "used_qmr":"SIM_APPLET",
 "client_notification_endpoint":"https://server.client.com/questions"
}

3.2.3.2. (3b) Acknowledgement
The acknowledgement MUST be a HTTP 200 OK. The HTTP code is the only parameter to consider. The rest of
the HTTP response should be ignored.

3.2.3.2.1. Example of the simplest acknowledgement
The following is a non-normative example.

HTTP/1.1 200 OK

3.3. Terminated-By-Client Flow
In this flow, after the first User Questioning Request, the Client must supply the OP with a verification_code in
order to finish the User Questioning (accepted, denied, error...).

3.3.1. Terminated-By-Client Flow steps

+--------+ +--------+
	---(1a) User Questioning Request-------------->			
	<--(1b) Question Created-----------------------			
	+--------+			
			<--(2a) User interactions to get-->	
		End-	the Questioned User's Statement	
		User		
Client			<----(2b) Verification_code--------	OP
	+--------+			
	<-----+ (2c) Verification_code			
	---(3a) Verification_code--------------------->			

| | | |
| |<---(3b) User Questioning Response-------------| |
+--------+ +--------+

3.3.2. User Questioning Endpoint

3.3.2.1. (1a) User Questioning Request
The Client sends the User Questioning Request using HTTP POST.

The Access Token obtained from an OAuth Authorization request MUST be sent as a Bearer Token.

The User Questioning Request MUST contain a Question object in the request body, with the following attributes.

Attribute name Presence

user_id FORBIDDEN if the access_token is tied with a End-User, MANDATORY if the
access_token is not tied with a End-User

user_id_type FORBIDDEN if the access_token is tied with a End-User, MANDATORY if the
access_token is not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

wished_qmr OPTIONAL

client_notification_endpoint IGNORED

...any other... IGNORED

3.3.2.1.1. Example with an access_token tied with a specific End-User
This example describes a context where the access_token is tied with a specific End-User. The Client MAY add
user_id and user_id_type in the request, but they will be ignored.

The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.example.com
Content-Type: application/json
Accept: application/json
Authorization: Bearer SlAV32hkKG

{
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.3.2.1.2. Example with an access_token NOT tied with a specific End-User
This example describes a context where the access_token is not tied with a specific End-User. The Client MUST
add user_id and user_id_type in the request.

The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.example.com
Content-Type: application/json
Accept: application/json

Authorization: Bearer SlAV32hkKG

{
 "user_id":"33612345678",
 "user_id_type":"MSISDN",
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.3.2.2. (1b) Question Created
The Client receives the created Question object in a HTTP 201 Created response.

The Question object is contained in the response body, with the following attributes.

Attribute name Presence

id MANDATORY

status MANDATORY

creation_date MANDATORY

last_modification_date MANDATORY

user_id OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token
is not tied with a End-User

user_id_type OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token
is not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

wished_qmr OPTIONAL

client_notification_endpoint OPTIONAL

...any other... FORBIDDEN

In this flow, there are three possible status (cf. Section 2.3) in the Question object received:

{"status":"PENDING"}
This is the temporary status when the User Questioning Response is not ready.

If the status is PENDING, then the current flow is either the Pulled-By-Client Flow (Section 3.1) or the
Pushed-To-Client Flow (Section 3.2).

{"status":"VERIFICATION_CODE_NEEDED"}
This is a temporary status when an additional verification_code is required. This is the normal status for
this flow.

{"status":"ERROR"}
This is the final status when there is an error. Refer to Section 4 for more details.

3.3.2.2.1. Example with an access_token tied with a specific End-User
The following is a non-normative example.

HTTP/1.1 201 Created
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: 442c8ae3-a1ae-49ba-9deb-5a530eac19fc

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"VERIFICATION_CODE_NEEDED",
 "creation_date":"1311281970",
 "last_modification_date":"1311281970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.3.2.2.2. Example with an access_token not tied with a specific End-User
The following is a non-normative example.

HTTP/1.1 201 Created
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: 442c8ae3-a1ae-49ba-9deb-5a530eac19fc

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"VERIFICATION_CODE_NEEDED",
 "creation_date":"1311281970",
 "last_modification_date":"1311281970",
 "user_id":"33612345678",
 "user_id_type":"MSISDN",
 "question_to_display":"An example message to display",
 "wished_qcr":"3"
}

3.3.2.3. (2a) User interactions to get the Questioned User's Statement
The way the User Questioning Endpoint obtains the Questioned User's Statement for the Question is out of the
scope of this specification.

3.3.2.4. (2b) User Questioning Endpoint Sends Verification_code to
Questioned User

The way the User Questioning Endpoint sends the verification_code to the Questioned User is out of the scope
of this specification.

3.3.2.5. (2c) Questioned User Sends Verification_code to Client
The way the End-User sends the verification_code to the Client is out of the scope of this specification.

3.3.2.6. (3a) Client Sends Verification_code to User Questioning Endpoint
The Client sends the User Questioning Request using HTTP PUT.

The Access Token obtained from an OAuth Authorization request MUST be sent as a Bearer Token.

The User Questioning Request MUST contain a Question object in the request body, with the following attributes.

Attribute name Presence

verification_code MANDATORY

...any other... IGNORED

3.3.2.6.1. Example
The following is a non-normative example.

PUT /questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c HTTP/1.1
Host: server.example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer SlAV32hkKG

{
 "verification_code":"12345"
}

3.3.2.7. (3b) User Questioning Response
The Client receives the created User Questioning Response in a HTTP 200 OK response.

The User Questioning Response MUST contain a Question object in the request body, with the following
attributes.

Attribute name Presence

id MANDATORY

status MANDATORY

creation_date MANDATORY

last_modification_date MANDATORY

statement_date MANDATORY

user_id OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token is
not tied with a End-User

user_id_type OPTIONAL if the access_token is tied with a End-User, MANDATORY if the access_token is
not tied with a End-User

question_to_display MANDATORY

wished_qcr MANDATORY

wished_qmr OPTIONAL

used_qcr MANDATORY

used_qmr OPTIONAL

...any other... IGNORED

In this flow, there are three possible status (cf. Section 2.3) in the Question object received:

{"status":"ACCEPTED"}
This is the final status when the End-User accepted the User Questioning Request.

{"status":"DENIED"}
This is the final status when the End-User denied the User Questioning Request.

{"status":"ERROR"}

This is the final status when there is an error. Refer to Section 4 for more details.

3.3.2.7.1. Example of Accepted Statement
The following is a non-normative example.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"ACCEPTED",
 "creation_date":"1311281970",
 "last_modification_date":"1311282970",
 "statement_date":"1311282970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "used_qcr":"2",
 "used_qmr":"SMS_OTP"
}

3.3.2.7.2. Example of Denied Statement
The following is a non-normative example.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"DENIED",
 "creation_date":"1311281970",
 "last_modification_date":"1311282970",
 "statement_date":"1311282970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "used_qcr":"2",
 "used_qmr":"SMS_OTP"
}

4. Errors

4.1. Example with ERROR status in a response to Client
This example can occur in the Pulled-By-Client (cf. Section 3.1), Pushed-To-Client (cf. Section 3.2) and
Terminated-By-Client (cf. Section 3.3) flows.

The following is a non-normative example.

HTTP/1.1 200 OK

Content-Type: application/json
Content-Location: https://server.example.com/questions/84c1d9d6-62e5-4803-ac0e-36b858ccbd8c
Content-Length: xxx
Etag: "442c8ae3-a1ae-49ba-9deb-5a530eac19fc"

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"ERROR",
 "creation_date":"1311281970",
 "last_modification_date":"1311281970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "error_info":
 {
 "error_code":"unknown_user",
 "error_description":"The user is unknown",
 "error_uri":"https://server.example.com/errors/unknown_user"
 }
}

4.2. Example with ERROR status in a request to Client
This example can occur in the Pushed-To-Client flow (cf. Section 3.2).

The following is a non-normative example.

POST /questions HTTP/1.1
Host: server.client.com
Accept: application/json

{
 "id":"84c1d9d6-62e5-4803-ac0e-36b858ccbd8c",
 "status":"ERROR",
 "creation_date":"1311281970",
 "last_modification_date":"1311282970",
 "statement_date":"1311282970",
 "question_to_display":"An example message to display",
 "wished_qcr":"3",
 "error_info":
 {
 "error_code":"unknown_user",
 "error_description":"The user is unknown",
 "error_uri":"https://server.example.com/errors/unknown_user"
 }
}

5. Security Considerations
TBD

6. Privacy Considerations
TBD

7. IANA Considerations

This document makes no requests of IANA.

8. Normative References

[JWT] Jones, M., Bradley, J. and N. Sakimura, "JSON Web Token (JWT)", Internet-Draft draft-
ietf-oauth-json-web-token, May 2013.

[OpenID.Core] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C. and E. Jay, "OpenID
Connect Standard 1.0", December 2013.

[OpenID.Discovery] Sakimura, N., Bradley, J., Jones, M. and E. Jay, "OpenID Connect Discovery 1.0",
September 2014.

[OpenID.Registration] Sakimura, N., Bradley, J. and M. Jones, "OpenID Connect Dynamic Client Registration
1.0", December 2013.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, DOI 10.17487/RFC2119, March 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246, DOI
10.17487/RFC2246, January 1999.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2",
RFC 5246, DOI 10.17487/RFC5246, August 2008.

[RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749,
October 2012.

[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization Framework: Bearer Token Usage",
RFC 6750, DOI 10.17487/RFC6750, October 2012.

Appendix A. Acknowledgements
The following have contributed to the development of this specification.

Appendix B. Notices
Copyright (c) 2014 The OpenID Foundation.

The OpenID Foundation (OIDF) grants to any Contributor, developer, implementer, or other interested party a
non-exclusive, royalty free, worldwide copyright license to reproduce, prepare derivative works from, distribute,
perform and display, this Implementers Draft or Final Specification solely for the purposes of (i) developing
specifications, and (ii) implementing Implementers Drafts and Final Specifications based on such documents,
provided that attribution be made to the OIDF as the source of the material, but that such attribution does not
indicate an endorsement by the OIDF.

The technology described in this specification was made available from contributions from various sources,
including members of the OpenID Foundation and others. Although the OpenID Foundation has taken steps to
help ensure that the technology is available for distribution, it takes no position regarding the validity or scope of
any intellectual property or other rights that might be claimed to pertain to the implementation or use of the
technology described in this specification or the extent to which any license under such rights might or might not
be available; neither does it represent that it has made any independent effort to identify any such rights. The
OpenID Foundation and the contributors to this specification make no (and hereby expressly disclaim any)
warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement,
fitness for a particular purpose, or title, related to this specification, and the entire risk as to implementing this
specification is assumed by the implementer. The OpenID Intellectual Property Rights policy requires
contributors to offer a patent promise not to assert certain patent claims against other contributors and against
implementers. The OpenID Foundation invites any interested party to bring to its attention any copyrights,
patents, patent applications, or other proprietary rights that may cover technology that may be required to
practice this specification.

Appendix C. Document History

http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750

[[To be removed from the final specification]]

-01

Initial draft
Added OIDF Standard Notice

Authors' Addresses
Nicolas Aillery
Orange
EMail: nicolas.aillery@orange.com

Charles Marais
Orange
EMail: charles.marais@orange.com

mailto:nicolas.aillery@orange.com
mailto:charles.marais@orange.com

	Abstract
	Table of Contents
	1. Introduction
	1.1. Requirements Notation and Conventions
	1.2. Terminology
	1.3. Overview
	1.4. Example of use cases involving the User Questioning API
	2. Question Object
	2.1. error_info SubObject
	2.2. error_code
	2.3. status
	2.4. user_id_type
	3. User Questioning flows
	3.1. Pulled-By-Client Flow
	3.1.1. Pulled-By-Client Flow steps
	3.1.2. User Questioning Endpoint
	3.1.2.1. (1a) User Questioning Request
	3.1.2.1.1. Example with an access_token tied with a specific End-User
	3.1.2.1.2. Example with an access_token NOT tied with a specific End-User
	3.1.2.2. (1b) Question Created
	3.1.2.2.1. Example with an access_token tied with a specific End-User
	3.1.2.2.2. Example with an access_token not tied with a specific End-User
	3.1.2.3. (2a) User interactions to get the Questioned User's Statement
	3.1.2.4. (3a) Get User Questioning Response
	3.1.2.4.1. Example not using If-None-Match header
	3.1.2.4.2. Example using If-None-Match header
	3.1.2.5. (3b) User Questioning Response
	3.1.2.5.1. Example with PENDING status and no If-None-Match header in the User Questioning Request
	3.1.2.5.2. Example with PENDING status and a If-None-Match header in the User Questioning Request
	3.1.2.5.3. Example with ACCEPTED status
	3.1.2.5.4. Example with DENIED status
	3.2. Pushed-To-Client Flow
	3.2.1. Pushed-To-Client Flow Steps
	3.2.2. User Questioning Endpoint
	3.2.2.1. (1a) User Questioning Request
	3.2.2.1.1. Example with an access_token tied with a specific End-User
	3.2.2.1.2. Example with an access_token NOT tied with a specific End-User
	3.2.2.2. (1b) Question Created
	3.2.2.2.1. Example with an access_token tied with a specific End-User
	3.2.2.2.2. Example with an access_token not tied with a specific End-User
	3.2.2.3. (2a) User interactions to get the Questioned User's Statement
	3.2.3. Client Notification Endpoint
	3.2.3.1. (3a) User Questioning Response
	3.2.3.1.1. Example with ACCEPTED status
	3.2.3.1.2. Example with DENIED status
	3.2.3.2. (3b) Acknowledgement
	3.2.3.2.1. Example of the simplest acknowledgement
	3.3. Terminated-By-Client Flow
	3.3.1. Terminated-By-Client Flow steps
	3.3.2. User Questioning Endpoint
	3.3.2.1. (1a) User Questioning Request
	3.3.2.1.1. Example with an access_token tied with a specific End-User
	3.3.2.1.2. Example with an access_token NOT tied with a specific End-User
	3.3.2.2. (1b) Question Created
	3.3.2.2.1. Example with an access_token tied with a specific End-User
	3.3.2.2.2. Example with an access_token not tied with a specific End-User
	3.3.2.3. (2a) User interactions to get the Questioned User's Statement
	3.3.2.4. (2b) User Questioning Endpoint Sends Verification_code to Questioned User
	3.3.2.5. (2c) Questioned User Sends Verification_code to Client
	3.3.2.6. (3a) Client Sends Verification_code to User Questioning Endpoint
	3.3.2.6.1. Example
	3.3.2.7. (3b) User Questioning Response
	3.3.2.7.1. Example of Accepted Statement
	3.3.2.7.2. Example of Denied Statement
	4. Errors
	4.1. Example with ERROR status in a response to Client
	4.2. Example with ERROR status in a request to Client
	5. Security Considerations
	6. Privacy Considerations
	7. IANA Considerations
	8. Normative References
	Appendix A. Acknowledgements
	Appendix B. Notices
	Appendix C. Document History
	Authors' Addresses

