
 TOC Draft N. Sakimura, Ed.

 NRI

 D. Recordon

 Facebook

 J. Bradeley

 Protiviti  Government Services

 B. de Madeiros

 Google

 M. Jones

 Microsoft

 E. Jay, Ed.

 MGI1

 May 1, 2011

OpenID Connect Core 1.0 - draft 05
Abstract

OpenID Connect is an identity framework that provides authentication, authorization, and
attribute transmition capability. It allows third party attested claims from distributed sources.
The specification suite builts on OAuth 2.0 and consists of Building Blocks (Core, JSON Web
Token, JSON Web Signatures, JSON WEB Encryption, JSON Web Keys, Simple Web Discovery),
Protocol Bindings (e.g, Artifact Binding, Web App Binding, User Agent Binding) and
Extensions. This specification is the "Core" of the suite that defines the messages used and
abstract flow which will be further constrained or extended in the companion specifications in
the suite.

Table of Contents

1.  Requirements Notation and Conventions
2.  Terminology
3.  Overview
4.  Messages
    4.1.  Authorization Endpoint
    4.2.  Token Endpoint
    4.3.  UserInfo Endpoint
    4.4.  Session Management Endpoints
5.  serializations
    5.1.  Query String serialization
    5.2.  JSON Serialization
6.  Signatures
7.  Encryption
8.  Requests and Responses
9.  Verification
    9.1.  Authorization Request Verification
    9.2.  Authorization Response Verification
    9.3.  UserInfo Request Verification
    9.4.  UserInfo Response Verification
10.  Extensions
11.  Security Considerations
    11.1.  Assertion manufacture/modification
    11.2.  Assertion disclosure
    11.3.  Assertion repudiation
    11.4.  Assertion redirect
    11.5.  Assertion reuse
    11.6.  Secondary authenticator manufacture
    11.7.  Secondary authenticator capture
    11.8.  Assertion substitution
    11.9.  Authentication Request Disclosure
    11.10.  Timing Attack
    11.11.  Authentication Process Threats
12.  IANA Considerations
    12.1.  OAuth Parameters Registry
13.  Open Issues and Things To Be Done (TBD)
Appendix A.  Acknowledgements
Appendix B.  Document History
14.  Normative References
§  Authors' Addresses



 TOC 

 TOC 

 TOC 

 TOC 

1.  Requirements Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in  .

Throughout this document, values are quoted to indicate that they are to be taken literally.
When using these values in protocol messages, the quotes MUST NOT be used as part of the
value.

2.  Terminology

In addition to "Access Token", "Refresh Token", "Authorization Code", "Authorization Grant",
"Authorization Server", "Authorization Endpoint", "Client", "Client Identifier", "Client Secret",
"Protected Resource", "Resource Owner", "Resource Server", "Token Endpoint" defined in

 [RFC5849], this specification defines the following terms:

Assertion
A set of Claims about the End-User which is attested by the OP and Resource
Servers.

Authentication
An act of verifying End-User's identity through the verification of the credential.

Base64url
Base 64 Encoding  with URL and Filename Safe Alphabet without
padding.

Claims
A piece of information about an Entity that a Claims Provider asserts about that
Entity.

Entity
Something that has separate and distinct existence and that can be identified in
context.

End-user
A human resource owner.

OpenID Provider (OP)
Authorization Servers that are able to support OpenID Connect Messages.

OP Endpoints
End-User Authentication, Authorization, and Token Endpoint.

OpenID Request Object
A JSON object that holds the request variables. It holds OpenID request variables.
It MAY also contain other OAuth parameters for the request signing purpose, in
which case the parameter values MUST match with the OAuth request
parameters.

Relying Party (RP)
Client and Resource Servers.

RP Endpoints
The endpoint to which the OP responses are returned through redirect.

UserInfo Endpoint
A protected resource that when presented with a token by the client returns
authorized information about the current user.

3.  Overview

OpenID Connect protocol in abstract follows the following steps.

1. The Client sends a request to the Server's End-User Authorization Endpoint.
2. The Server authenticates the user and obtains appropriate authorization.
3. The Server responds with access_token and a few other variables.
4. The Client sends a request with the access_token to the Userinfo Endpoint.
5. Userinfo Endpoint returns the additional user information supported by the

Server.

Each message may be signed and encrypted. When the message is encrypted, it MUST be
signed first then encrypted. This specification only defines the abstract messsage flow and
message formats. The actual use MUST be based on one of the companion protocol bindings
specifications such as  [OpenID.AB] or 

 [OpenID.AC].

4.  Messages

[RFC2119]

OAuth 2.0

[RFC3548]

OpenID Connect Artifact Binding 1.0 OpenID
Connect Authorization Code Binding 1.0



 TOC 

 TOC 

 TOC 

In OpenID Connect protocols in abstract, the process proceeds by the Client interacting with
Endpoints. There are number of Endpoints involved.

1. Authorization Endpoint: The Client sends a request to the Server at the
Authorization endpoint. The Server then authenticate the End-User to find out if
he is eligible to make the authorization. Then, upon the authorization action of
the End-User, the Server returns an Authorization Response that includes
Authorization Code, code. For some Clients, Implicit Grant may be used to
obtain access_token without using code. In this case, response_type MUST be
set to token.

2. Token Endpoint: The Client sends the Access Token Request to the Token
Endpoint to obtain Access Token Response which includes access_token and
openid token.

3. UserInfo Endpoint: The access_token MAY be sent to the UserInfo Endpoint to
obtain user information/assertion/claims about the user by sending a request to
the userinfo endpoint.

4. Session Management Endpoints: The openid token MAY be sent to these
endpoints to manage the session.

Both Request and Response may either be serialized into  or
 [RFC4627].

4.1.  Authorization Endpoint

Client sends Autorization Request to the Authorization Endpoint to obtain Authorization
Response.

4.1.1.  Authorization Request

Section 4.1.1 and 4.2.1 of  [RFC5849] defines OAuth Authorization Request
parameters. In this specification, the values to the parameters are defined as follows.

response_type
The value MUST be set to code for requesting an Authorization Code, token for
requesting an Access Token.

scope
It MUST include openid as one of the string.

In addition, this specification defines following extension parameter.

req
OPTIONAL. A  [jwt] encoded OpenID Request Object.

request_uri
OPTIONAL. A URL that points to the OpenID Request Object.

max_auth_age
OPTIONAL. Maximum number of seconds from the last authentication that is
permissible from the Client.

Following is a non-normative example when they are sent in the query parameters
serialization.

GET /authorize?scope=openid&response_type=code
&client_id=s6BhdRkqt3
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
&scope=openid
&openid=HeADeR.pAyl0rd.cRypT0 HTTP/1.1
Host: server.example.com

4.1.2.  Authorization Response

When the response_type in the request was code, the Authorization Response MUST return
the parameters defined in section 4.1.2 of  [RFC5849]. Note that if the
response_type in the request was token, the  defined later
MUST be returned instead.

For example, the Authorization Server redirects the End-User's user-agent by sending the
following HTTP response:

Query String serialization
JSON

OAuth 2.0

JWT

OAuth 2.0
Access Token Response



 TOC 

 TOC 

 TOC 

HTTP/1.1 302 Found
Location: https://client.example.com/cb?code=i1WsRn1uB1&state=1f8skd

4.1.3.  Authorization Error Response

If the end-user denies the access request or if the request fails, the authorization server
informs the client by returning parameters defined in section 4.1.2.1 of 
[RFC5849] .

4.1.3.1.  Error Codes

In addition to the error codes defined in section 4.1.2.1 of  [RFC5849], this
specification defines the following additional error codes:

invalid_client
The client identifier provided is invalid, the client failed to authenticate, the client
did not include its credentials, provided multiple client credentials, or used
unsupported credentials type.

unauthorized_client
The authenticated client is not authorized to use the access grant type provided.

invalid_grant
The provided access grant is invalid, expired, or revoked (e.g. invalid assertion,
expired authorization token, bad end-user password credentials, or mismatching
authorization code and redirection URI).

unsupported_grant_type
The access grant included - its type or another attribute - is not supported by the
authorization server.

invalid_scope
The requested scope is invalid, unknown, malformed, or exceeds the previously
granted scope.

invalid_request_response_type
The requested response type is unsupported or is missing.

invalid_request_type
The request type is unsupported.

invalid_request_openid_type
The openid type in the the request is not supported.

invalid_request_redirect_uri
The redirect_uri in the request is missing or malformed.

invalid_request_signature
The request has an invalid signature.

invalid_request_realm
The openid request realm is missing or malformed.

invalid_request_atype
The request contains an unsupported response assertion type.

invalid_request_recipient
The recipient of the request is invalid or does not match.

The error codes can be extended by the string prefixed by x_. If custome error code are
used, error_uri MUST be provided.

4.1.4.  OpenID Request Object

The OpenID Request object is used to provide OpenID request parameters that differ from
the default ones. Implementing support for the OpenID Request object is OPTIONAL.
Supporting it is necessary for implementations that need to request or provide sets of claims
other than the default UserInfo claim set.

If present, the OpenID Request object is passed as the value of a "req=" OAuth 2.0
parameter and is represented as a JWT. Parameters that affect the information returned from
the UserInfo Endpoint are in the "inf" member. Parameters that affect the information
returned in the OpenID Token are in the "oit" member.

An example an OpenID request object is as follows:

{
 "inf":
   {
     "clm":
       {
         "name": null,

OAuth 2.0

OAuth 2.0



         "displayName": {"opt": true},
         "emails": null,
         "photos": {"opt": true},
       },
     "fmt": "sig"
   }
 "oit":
   {
     "clm":
       {
        "aat": null
       }
     "mxa": 86400,
     "eaa": 2
   }
}

The OpenID Request object is a  [jwt] that MAY contain a set of members defined by this
specification and MAY contain other members that are not defined by this specification. The
JWT MAY be signed or unsigned. When it is unsigned, it will be indicated by the JWT
"sig":"none" convention in the JWT header.

The members defined by this specification are:

inf
OPTIONAL. (UserInfo Endpoint request): Requests affecting the values to be
returned from the UserInfo Endpoint. If not present, the UserInfo Endpoint behaves
in the default manner.

oit
OPTIONAL. (OpenID Token request): Requests affecting the values to be included
in the OpenID Token. If not present, the default OpenID Token contents are used. If
present, these parameters are used to request deltas to the default contents of
the OpenID Token.

If signed, the OpenID Request object SHOULD contain the standard JWT "iss" and "aud"
claims.

The structure of the "inf" (UserInfo Endpoint request) member is a JSON object that MAY
contain the following members:

clm
OPTIONAL. (Requested Claims): Set of requested claims from the UserInfo
Endpoint. If not present, the default UserInfo claims held by the IdP are returned.

fmt
OPTIONAL. (Format): The requested format for the UserInfo Endpoint information.
If not present, the format is an unsigned JSON object.

The "clm" member is a JSON object with a member for each requested claim. The member
names are the requested claim names. The member values may be either:

null
This indicates that this claim is being requested in the default manner. In
particular, this is a required claim. OR

A JSON Object
This is used to provide additional information about the claim being requested.

All members of the "clm" object are OPTIONAL.

The members of the JSON object value following a claim name defined by this specification
are:

opt
If this is an optional claim, this member's value MUST be true, else, if present, its
value MUST be false, which indicates that it is a required claim. If it is not
present, it is a required claim.

Other members MAY be defined to provide additional information about the requested claim.
If the "clm" member is present in the "info" object, the claims requested within it override the
default claim set that would otherwise be returned from the UserInfo Endpoint.

The "fmt" member of the "inf" object is used to specify the requested format of the UserInfo
Endpoint contents. Values defined are:

nor
(normal) - in which case the contents are an unsigned JSON object

sig
(signed) - in which case the contents are a signed JWT

enc
(encrypted) - in which case the contents are an signed and encrypted JWT

JWT



 TOC 

 TOC 

 TOC 

All members of the "inf" object are OPTIONAL. Other members MAY be present and if so,
SHOULD understood by both parties.

The structure and function of the "oit" (OpenID Token request) member of the OpenID
Request object is similar to that of the "inf" member. It also contains an optional "clm"
member, with the same structure as that for the "inf" member. If the "clm" member is
present in the "oit" object, the claims requested within it modify the default claim set that
would otherwise be returned in the OpenID Token. Unlike for the "inf" member, typically these
claims will augment, rather than override the default set.

Following claim MAY be requested in the OpenID Token by specifying it in the "clm" member:

aat
OPTIONAL. (authenticated at): Requests that the "aat" claim be present. The claim
value is the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until
the date/time that the user authentication occurred. (The "aat" claim semantically
corresponds to the openid.pape.auth_time response parameter.)

In addition to the "clm" member, this additional member is defined within the "oit" member of
the OpenID Request object:

mxa
OPTIONAL. (max authentication age): Specifies that the user must be actively
authenticated if any present authentication is older than the specified number of
seconds. (The "mxa" request parameter corresponds to the OpenID 2.0
openid.pape.max_auth_age request parameter.)

eaa
OPTIONAL. (entity authentication assurance): Specifies the X.eaa/ISO29115 entity
authentication assurance level that is requested by the client.

It is anticipated that additional "oit" parameters MAY be defined to request that additional
properties hold for the authentication - for instance, that certain authentication policies be
applied (in the same spirit of the OpenID 2.0 openid.pape.auth_policies values), or that the
authentication conform to the policies defined by a specified trust framework. These
parameters MAY be defined by extension specifications.

All members of the "oit" object are OPTIONAL. Other members MAY be present and if so,
SHOULD understood by both parties.

All members of the OpenID Request object are OPTIONAL. Other members MAY be present
and if so, SHOULD be understood by both parties.

4.2.  Token Endpoint

Access Token Request / Response interacts with a Token Endpoint. Upon the successful
request, it returns two tokens, Access Token and OpenID Token.

4.2.1.  Access Token Request

The client obtains an access token by authenticating with the authorization server and
presenting its access grant (in the form of an authorization code, resource owner credentials,
an assertion, or a refresh token).

The request parameters of of the Access Token Request is defined in section 4.1.3 of 
 [RFC5849] .

4.2.2.  Access Token Response

After receiving and verifying a valid and authorized Access Token Request from the client, the
Authorization Server returns a Positive Assertion that includes an Access Token. The
parameters in the successful response is defined in Section 5.1 of  [RFC5849] .

In addition, this specification defines the following parameter:

openid
REQUIRED if it was requested in the request. An OpenID Token. It is a  [jws]
signed claim described below.

Following is a non-normative example.

{
    "access_token": "SlAV32hkKG",

OAuth
2.0

OAuth 2.0

JWS



 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

    "token_type": "jwt",
    "refresh_token": "8xLOxBtZp8",
    "user_id": "http://op.example.com/alice#1234",
    "domain": "op.example.com",
    "expires_in": 3600,
    "openid":"jwtheader.jwtpayload.jwtcrypto"
}

As in the  [RFC5849], Clients SHOULD ignore unrecognized response parameters.

4.2.2.1.  OpenID Token

The OpenID Token is a JWS signed claim that attests the following:

server_id
REQUIRED. The unique identifier of the authorization server such that when paired
with the user_id creates a globally unique and never reassigned identifier.

user_id
REQUIRED. A locally unique and never reassigned identifier for the user, which is
intended to be consumed by the Client. e.g. "24400320" or
"AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4". It MUST NOT exceed 255 ASCII
characters in length.

aud
REQUIRED. The  [jwt]aud (audience) claim.

exp
REQUIRED. The  [jwt] exp (expiration time) claim.

pape
OPTIONAL. (TBD) If we want this token to be short, we probably want to define a
shorter equivalent of PAPE.

4.2.3.  Token Error Response

If the assertion request is invalid or unauthorized, the authorization server constructs the
error response. The parameters of the Token Error Response is defined as in Section 5.2 of

 [RFC5849].

4.2.3.1.  Error Codes

In addition to the error codes defined in Section 5.2 of  [RFC5849], this
specification defines the following error codes.

invalid_client_secret
The client secret does not matched pre-shared secret code, is of a different type,
or has an invalid signature.

invalid_secret_type
The specified secret type is unsupported.

invalid_request_signature
The request has an invalid signature.

invalid_request_code
The authorization code is missing, malformed, or invalid.

invalid_request_openid_type
The openid type in the the request is not supported.

The error codes can be extended by the string prefixed by x_. If custome error code are
used, error_uri MUST be provided.

4.3.  UserInfo Endpoint

UserInfo Request/Response interacts with UserInfo Endpoint.

4.3.1.  UserInfo Request

Client MAY send request with following parameters to the UserInfo Endpoint to obtain further
information about the user.

OAuth 2.0

JWT

JWT

OAuth 2.0

OAuth 2.0



 TOC 

 TOC 

access_token
REQUIRED. The access_token obtained above.

user_id
REQUIRED. A locally unique and never reassigned identifier for the user. e.g.
"24400320" or "AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4". It MUST NOT
exceed 255 ASCII characters in length. It could be a pairwise private identifier of
the enduser between the Client and the Server.

client_id
REQUIRED. The client identifier recognized by the authorization server.

4.3.2.  UserInfo Response

The response is a JSON object which contains some (or all) of the following reserved keys:

[ToDo: Replace with scim based definition -- Pam doing the table.]

user_id
REQUIRED. A locally unique and never reassigned identifier for the user. e.g.
"24400320" or "AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4". It MUST NOT
exceed 255 ASCII characters in length. It MUST NOT be reassigned to another
user.

server_id
REQUIRED. The unique identifier of the authorization server such that when paired
with the user_id creates a globally unique and never reassigned identifier.

client_id
REQUIRED. The client identifier recognized by the authorization server.

asserted_user
REQUIRED. One of "true" if the access was issued for this user or "false" if it is for a
different user.

profile_urls
OPTIONAL. An array of URLs that belong to the user across any number of
domains.

display_name
OPTIONAL. The display name of the user. e.g., "David Recordon".

given_name
OPTIONAL. The first name of the user. e.g., "David".

family_name
OPTIONAL. The family name of the user. e.g., "Recordon".

email
OPTIONAL. The verified email address of the user. e.g., "recordond@gmail.com".

language
OPTIONAL. End User's preferred language as specified by ISO639.

picture
OPTIONAL. The URL of End User's Picture. e.g.,
"http://graph.facebook.com/davidrecordon/picture".

openid
REQUIRED if OpenID variables were specified in the Authorization Request. It is a
JSON Object that includes the claim responses.

4.3.3.  UserInfo Error Response

The Authorization Server includes one of the following error codes with the error response:

invalid_request
The request is missing a required parameter, includes an unsupported parameter
or parameter value, repeats a parameter, includes multiple credentials, utilizes
more than one mechanism for authenticating the client, or is otherwise
malformed.

invalid_client
The client identifier provided is invalid, the client failed to authenticate, the client
did not include its credentials, provided multiple client credentials, or used
unsupported credentials type.

unauthorized_client
The authenticated client is not authorized to use the access grant type provided.

invalid_grant
The provided access grant is invalid, expired, or revoked (e.g. invalid assertion,
expired authorization token, bad end-user password credentials, or mismatching
authorization code and redirection URI).

unsupported_grant_type
The access grant included - its type or another attribute - is not supported by the
authorization server.

invalid_scope
The requested scope is invalid, unknown, malformed, or exceeds the previously
granted scope.

invalid_access_token



 TOC 

 TOC 

invalid_access_token
The access token is not valid for the requested resource, malformed, is in an
incorrect format, outside the valid scope, or expired.

invalid_refresh_token
The refresh token is not valid, malformed, is in an incorrect format, outside the
valid scope, or expired.

invalid_request_signature
The request has an invalid signature.

invalid_request_type
The request type is unsupported.

invalid_request_atype
The request contains an unsupported response assertion type.

invalid_request_recipient
The recipient of the request is invalid or does not match.

4.4.  Session Management Endpoints

To manage a session, the client sends a request to the session management endpoints at
the authorization server. The session management endpoints at the authorization server
are:

Session Refresh
Refreshes an expired ID Token

Check Session
Get a plain text JSON structure from a ID Token

End Session
Ends a session

4.4.1.  Session Refresh

To refresh a ID Token session that has expired, the client sends a request to the Refresh
Session endpoint with an ID Token. A new ID Token is returned in JWS signed format.

Request Parameters:

openid
REQUIRED. A previously issued ID Token from a session request

state
REQUIRED. An opaque value used by the Client to maintain state between the
request and callback. If provided, the Authorization Server MUST include this value
when redirecting the user-agent back to the Client. Clients are strongly advised to
use this variable to relate the request and response.

redirect_uri
REQUIRED. An absolute URI to which the authorization server will redirect the user-
agent to with the new ID Token.

Response:

The response is a new ID Token. In a typical HTTP binding, an HTTP 302 redirect to the
specified redirect_uri in the request with a new ID Token.

openid
A new ID Token

The following is a non-normative session refresh request:

Request:

GET /op/refresh_token?openid=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiIsImtpZCI6
ImNsaWVudC5leGFtcGxlLmNvbSJ9.eyJpc3N1ZXIiOiJodHRwOlwvXC9zZXJ2ZXIuZXhhbXBs
ZS5jb20iLCJjbGllbnRfaWQiOiJjbGllbnQuZXhhbXBsZS5jb20iLCJhdWRpZW5jZSI6ImNsa
WVudC5leGFtcGxlLmNvbSIsImlkIjoidXNlcl8yMzQyMzQiLCJleHAiOjEzMDM4NTI4ODB9.a
JwagC6501Da-zK-X8Az9B-Y625aSEfxVuBpFEDjOxQ
&state=bar&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fidtoken_cb
Host: server.example.com

Response:

HTTP/1.1 302 OK
Location: http://client.example.com/idtoken_cb?openid=eyJ0eXAiOiJKV1QiLCJh
bGciOiJIUzI1NiIsImtpZCI6ImNsaWVudC5leGFtcGxlLmNvbSJ9.eyJpc3N1ZXIiOiJodHRwO
lwvXC9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJjbGllbnRfaWQiOiJjbGllbnQuZXhhbXBsZS5jb20
iLCJhdWRpZW5jZSI6ImNsaWVudC5leGFtcGxlLmNvbSIsImlkIjoidXNlcl8yMzQyMzQiLCJle
HAiOjEzMDM4NTI4ODB9.aJwagC6501Da-zK-X8Az9B-Y625aSEfxVuBpFEDjOxQ&state=bar&
expires_in=3600



 TOC 

 TOC 

4.4.2.  Check Session

For clients that are not capable of dealing with JWS signed ID Tokens, they can send the ID
Token to the Check Session endpoint. It will validate the ID Token and return a plain text JSON
structure of the ID Token.

Request Parameters:

openid
REQUIRED. A previously issued ID Token from a session request

Response:

The response body is a plain text JSON structure of the base64url decoded payload of the
signed ID Token. In a typical HTTP binding, the response is a HTTP 200 response code with
the content-type header set to "application/json".

The following is a non-normative example of a check session request:

Request:
POST /op/check_openid?openid=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiIsImtpZCI6
ImNsaWVudC5leGFtcGxlLmNvbSJ9.eyJpc3N1ZXIiOiJodHRwOlwvXC9zZXJ2ZXIuZXhhbXBs
ZS5jb20iLCJjbGllbnRfaWQiOiJjbGllbnQuZXhhbXBsZS5jb20iLCJhdWRpZW5jZSI6ImNsa
WVudC5leGFtcGxlLmNvbSIsImlkIjoidXNlcl8yMzQyMzQiLCJleHAiOjEzMDM4NTI4ODB9.a
JwagC6501Da-zK-X8Az9B-Y625aSEfxVuBpFEDjOxQ

Response:
HTTP/1.1 200 OK
Content-Type: application/json

{
  "iss":"http://server.example.com",
  "client_id","http://client.example.com",
  "audience", "http://client.example.com",
  "user_id":"user_328723",
  "exp":1303852880
}

4.4.3.  End Session

To end the session, the client sends a ID Token to the End Session endpoint. Upon receiving
the request, the authorization server performs the logout flow for the user and then redirects
the user-agent to the specified redirect_uri.

Request Parameters:

openid
REQUIRED. A previously issued ID Token from a session request

state
REQUIRED. An opaque value used by the Client to maintain state between the
request and callback. If provided, the Authorization Server MUST include this value
when redirecting the user-agent back to the Client. Clients are strongly advised to
use this variable to relate the request and response.

redirect_uri
REQUIRED. An absolute URI to which the authorization server will redirect the user-
agent to with the new ID Token.

Response:

The response is dependant on the particular binding. In HTTP binding, the response is a HTTP
302 redirect response to the redirect_uri specified in the request.

The following is a non-normative session refresh request:

Request:

GET /op/end_session?openid=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiIsImtpZCI6
ImNsaWVudC5leGFtcGxlLmNvbSJ9.eyJpc3N1ZXIiOiJodHRwOlwvXC9zZXJ2ZXIuZXhhbX
BsZS5jb20iLCJjbGllbnRfaWQiOiJjbGllbnQuZXhhbXBsZS5jb20iLCJhdWRpZW5jZSI6I
mNsaWVudC5leGFtcGxlLmNvbSIsImlkIjoidXNlcl8yMzQyMzQiLCJleHAiOjEzMDM4NTI4



 TOC 

 TOC 

 TOC 

 TOC 

ODB9.aJwagC6501Da-zK-X8Az9B-Y625aSEfxVuBpFEDjOxQ
&state=bar
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fendtoken_cb
Host: server.example.com

...
   Authorizion server performs logout flow
...

Response:

HTTP/1.1 302 OK
Location: http://client.example.com/endtoken_cb?state=bar

5.  serializations

Each message can be serialized either in query parameter serialization or JSON serialization
unless it was explicitly stated in the previous sections.

5.1.  Query String serialization

In order to serialize the parameters into Query String Serialization, the client constructs the
string by adding the following parameters to the end-user authorization endpoint URI query
component using the application/x-www-form-urlencoded format as defined by 

 [html401]:

Following is a non-normative example of such Serialization.

GET /authorize?scope=openid&response_type=code
&client_id=s6BhdRkqt3
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

5.2.  JSON Serialization

The parameters are serialized into a JSON structure by adding each parameter at the highest
structure level. Parameter names and string values are included as JSON strings. Numerical
values are included as JSON numbers. Each parameter may have JSON Structure as its
value.

Following is a non-normative example of such Serialization.

{
  "access_token":"SlAV32hkKG",
  "expires_in":3600,
  "refresh_token":"8xLOxBtZp8",
  "openid": {
    "type": "http://openid.net/specs/ab/1.0#id_res",
    "mode": "id_res",
    "op_endpoint": "https://op.example.com/op_endpoint",
    "client_id": "http://rp.example.com/",
    "server_id": "http://op.example.com/",
    "claimed_id": "https://example.com/alice#1234",
    "identity": "alice",
    "issued_at": 1274889460
  }
}

6.  Signatures

Depending on the transport through wich the messages are transported, the integrity of the
message may not be guaranteed, nor the originator of the message is not authenticated. To
mitigate these risks, OpenID Connect supports  [jws].

Following is the parameters for JWT.

HTML
4.01 Specification

JSON Web Signatures(JWS)



 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

typ
OPTIONAL. One of "JWT", "openid2json+sig".

alg
REQUIRED. One of the algorithm specified in Table 4 of  [jwt]

Compact Serialization SHOULD BE used when passing it through query parameters, while
JSON serialization SHOULD BE used when returning it in HTTP Body.

Following is a non-normative example of such signature in Compact serialization, where
HS256 algorithm was used (with line breaks for display purposes only):

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ
.
dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

7.  Encryption

To achieve message confidentiality and audience restriction, OpenID Connect uses 
 [jwe].

8.  Requests and Responses

Requests and Responses can either be plain, signed or encrypted. Signature should be
applied to the entire request or response. Signed request and responses in the query are
sent in the parameter "signed" together with other parameters. If the request and responses
are in the JSON Serialization, the JWS signed version MUST use the JSON serialization.

If the request and responses are to be encrypted with  [jwe],
non-encrypted payload MUST NOT be sent. The parameter name for the encrypted payload
MUST be 'jwe'.

9.  Verification

9.1.  Authorization Request Verification

If the request was signed, the Server MUST verify the signature as in JWT.

9.2.  Authorization Response Verification

To verify the validity of the Authorization Response, the client MUST to the following:

1. If the response was signed, the Client SHOULD verify the signature as in JWT as
the first step.

2. Check that OP that it connected was really the intended OP through TLS/SSL
server certificate check if the endpoint is TLS/SSL endpoint.

3. Check that current time is within the validity period.

If the client does not verify the signature, it MUST make a User Info API request.

9.3.  UserInfo Request Verification

If the request was signed, the Server MUST verify the signature as in  [jwt].

9.4.  UserInfo Response Verification

To verify the validity of the UserInfo Response, the client MUST to the following:

JWT

JSON
Web Encryption (JWE)

JSON Web Encryption (JWE)

JWT



 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

1. If the response was signed, the Client SHOULD verify the signature as in JWT as
the first step.

2. Check that OP that it connected was really the intended OP through TLS/SSL
server certificate check if the endpoint is TLS/SSL endpoint.

3. Check if the current time is within the validity period.

10.  Extensions

OpenID Connect supports the extension parameters in OpenID Request Object, OpenID
Token, and UserInfo Response.

11.  Security Considerations

Followings are the list of attack vectors and remedies that were considered for this
specification.

For details of the attack vector, see .

11.1.  Assertion manufacture/modification

To mitigate this attack, there are two ways to mitigate it.

1. The assertion may be digitally signed by the OP. The Relying Party SHOULD
check the digital signature to verify that it was issued by a legitimate OP.

2. The assertion may be sent over a protected channel such as TLS/SSL. In order to
protect the integrity of assertions from malicious attack, the OP MUST be
authenticated. In this specification, the assertion is always sent over TLS/SSL
protected channel.

11.2.  Assertion disclosure

The Assertion disclosure can be mitigated in the following two ways.

1. Assertion is sent over TLS/SSL protected channel, where RP is authenticated by
"client_id" and "client_secret".

2. Signed Assertion is encrypted by the RP's public key.

11.3.  Assertion repudiation

To mitigate this threat, the assertion may be digitally signed by the OP using a key that
supports non-repudiation. The RP SHOULD check the digital signature to verify that it was
issued by a legitimate OP.

11.4.  Assertion redirect

To mitigate this threat, the assertion includes the identity of the RP for whom it was
generated as "client_id". The RP verifies that incoming assertions include its identity as the
recipient of the assertion.

11.5.  Assertion reuse

The assertion includes a timestamp and a short lifetime of validity. The Relying Party checks
the timestamp and lifetime values to ensure that the assertion is currently valid.

11.6.  Secondary authenticator manufacture

Due to the large entropy requirement of the Artifact ("code") and short life nature of its
validity, the success probability of this attack is extremely low.

[SP800‑63]



 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

 TOC 

11.7.  Secondary authenticator capture

Secondary authenticator (="code") is transmitted only through HTTPS, thus it is protected
between the OP and the User-Agent, and User-Agent and the RP.

Only the place it can be captured is the User-Agent where the TLS session is terminated, and
is possible if the User-Agent is infested by malwares. However, it renders no usefulness as
long as the profile in use either RP authentication or assertion encryption.

11.8.  Assertion substitution

Responses to assertion requests is bound to the corresponding requests by message order
in HTTP, as both assertions and requests are protected by TLS that can detect and disallow
malicious reordering of packets.

11.9.  Authentication Request Disclosure

If the authentication request is POSTed directly through a protected channel, it is not possible
to disclose the authentication request.

If the Request File is encrypted by the OP's public key, the authentication request will not be
disclosed unless OP's private key gets compromised or the encryption algorithm becomes
vulnerable.

11.10.  Timing Attack

Timing attack can be used to reduce the effctive key length of the signature if the time
required to return the response in case of signature error and correct signature exists. Care
should be taken in the implementation to avoid this attack.

11.11.  Authentication Process Threats

In the category of Authentication Process Threats, following threats exists.

Online guessing
Phishing
Pharming
Eavesdropping
Replay
Session hijack
Man-in-the-middle

Authentication process per se as described in NIST SP800-63-rev1 is out of scope for this
protocol, but care SHOULD be taken to achieve appropriate protection.

12.  IANA Considerations

12.1.  OAuth Parameters Registry

12.1.1.  Scope Parameters

The following is the parameter registration request for the "scope" parameter as defined in
this specification:

Parameter name: openid
Parameter usage location: The End-User Authorization Endpoint request, the
End-User Authorization Endpoint response, the Token Endpoint request, the
Token Endpoint response, and the WWW-Authenticate header field.



 TOC 

 TOC 

 TOC 

 TOC 

Change controller: IETF
Specification document(s): [[ this document ]]
Related information: None

12.1.2.  Authorization Request Parameters

The follwoing is the parameter registration request for the Authorization Reqeust in this
specification:

Parameter name: openid
Parameter usage location: Authorization Request
Change controller: IETF
Specification document(s): [[ this document ]]
Related information: None

12.1.3.  Access Token Response Parameters

The following is the parameter registration request for the Access Token Response in this
specification:

Parameter name: openid
Parameter usage location: Access Token Response
Change controller: IETF
Specification document(s): [[ this document ]]
Related information: None

13.  Open Issues and Things To Be Done (TBD)

[[To be removed from the final specification.]]

Following items remains to be done in this draft.

1. Clean Up and add references.
2. Update JWT/JWS/JWE related things with the most current version of them.
3. Finish the security consideration section.
4. Properly capitalize the Defined Words.
5. Better to split the Authentication and Authorization server? (Model-wise, yes, but

it gets complicated. Current model is implicitly assuming that the Authentication
and Authorization server are operated by the same entity and the protocol
between them are proprietary.)

Appendix A.  Acknowledgements

As a successor version of  [OpenID.authentication‑2.0], this
specification heavily relies on  [OpenID.authentication‑2.0].
Please refer to Appendix C of  [OpenID.authentication‑2.0] for
the full list of the contributors for  [OpenID.authentication‑2.0].

This specification is largely compliant with OAuth 2.0 draft 15. As the draft is not yet
referenceable, relevant text has been incorporated into this draft. Please refer to the OAuth
2.0 specification for the list of contributors.

In addition, the OpenID Community would like to thank the following people for the work
they've done in the drafting and editing of this specification.

Anthony Nadalin (tonynad@microsoft.com), Microsoft.

Breno de Medeiros (breno@gmail.com), Google.

Chuck Mortimore (cmortimore@salesforce.com), Salesforce.com.

David Recordon (dr@fb.com)<author>, Facebook.

George Fletcher (george.fletcher@corp.aol.com), AOL.

Hideki Nara (hideki.nara@gmail.com), Takt Communications.

John Bradley (jbradely@mac.com) <author>, Protiviti Government Service.

Mike Jones (Michael.Jones@microsoft.com), Microsoft.

OpenID Authentication 2.0
OpenID Authentication 2.0
OpenID Authentication 2.0

OpenID Authentication 2.0



 TOC 

 TOC 

 TOC 

Nat Sakimura (n-sakimura@nri.co.jp) <author/editor>, Nomura Research
Institute, Ltd.

Paul Tarjan (pt@fb.com), Facebook.

Ryo Itou (ritou@yahoo-corp.jp), Yahoo! Japan.

Appendix B.  Document History

-01
First Draft that incorporates the core of both openidonnect.com proposal and
OpenID Artifact Binding RC3 and abstracted.

-02
Catch up to OAuth 2.0 d15. Replaced JSS and JSE to JWS and JWE. Section grouping
and reorganizations. Added more contributors.

-03
Combined with Session Management. Moved "openid" back to Token Endpoint.
Renaming the sections according to the Endpoint names. Rewrote intro to the
Messages section to be more approacheable.

-04
To keep the ID Token small so that it fits cookie more easily, moved OPTIONAL
parameters to UserInfo endpoint response.

-05
Reference OAuth 2.0 now since it will be stable.

14. Normative References

[OpenID.AB] Sakimura, N., Ed., Bradley, J., de Madeiros, B., Ito, R., and M. Jones, “OpenID Connect Artifact
Binding 1.0,” January 2011.

[OpenID.AC] Mortimore, C., Ed., Sakimura, N., Bradley, J., de Madeiros, B., Ito, R., and M. Jones, “OpenID
Connect Authorization Code Binding 1.0,” January 2011.

[OpenID.authentication-
2.0]

specs@openid.net, “OpenID Authentication 2.0,” 2007 (TXT, HTML).

[RFC1421] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption
and Authentication Procedures,” RFC 1421, February 1993 (TXT).

[RFC1422] Kent, S., “Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based
Key Management,” RFC 1422, February 1993 (TXT).

[RFC1423] Balenson, D., “Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms,
Modes, and Identifiers,” RFC 1423, February 1993 (TXT).

[RFC1424] Kaliski, B., “Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification
and Related Services,” RFC 1424, February 1993 (TXT).

[RFC1750] Eastlake, D., Crocker, S., and J. Schiller, “Randomness Recommendations for Security,”
RFC 1750, December 1994 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14,
RFC 2119, March 1997 (TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,” RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest Access Authentication,” RFC 2617,
June 1999 (TXT, HTML, XML).

[RFC3339] Klyne, G., Ed. and C. Newman, “Date and Time on the Internet: Timestamps,” RFC 3339,
July 2002 (TXT, HTML, XML).

[RFC3548] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 3548, July 2003 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629,
November 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),”
RFC 4627, July 2006 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,”
RFC 5246, August 2008 (TXT).

[RFC5849] Hammer-Lahav, E., “The OAuth 1.0 Protocol,” RFC 5849, April 2010 (TXT).

[SP800-63] National Institute of Standards and Technology, “NIST SP800-63rev.1: Electronic
Authentication Guideline,” NIST SP800-63.

Defines LoA

[html401] Ragget, D., “HTML 4.01 Specification,” December 1999.

[jwe] Jones, M., Belfanz, D., Bradeley, J., Goland, Y., Panzer, J., Sakimura, N., and P. Tarjan, “JSON Web
Encryption,” March 2011.

[jws] Jones, M., Belfanz, D., Bradeley, J., Goland, Y., Panzer, J., Sakimura, N., and P. Tarjan, “JSON Web
Signatures,” March 2011.

[jwt] Jones, M., Belfanz, D., Bradeley, J., Goland, Y., Panzer, J., Sakimura, N., and P. Tarjan, “JSON Web
Token,” January 2011.

Authors' Addresses

http://openid.net/specs/ab/1.0/
http://openid.net/specs/ab/1.0/
http://www.openid.net/specs/openid-authentication-2_0.txt
http://www.openid.net/specs/openid-authentication-2_0.html
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc1421
http://www.rfc-editor.org/rfc/rfc1421.txt
mailto:kent@BBN.COM
http://tools.ietf.org/html/rfc1422
http://www.rfc-editor.org/rfc/rfc1422.txt
mailto:balenson@tis.com
http://tools.ietf.org/html/rfc1423
http://www.rfc-editor.org/rfc/rfc1423.txt
mailto:burt@rsa.com
http://tools.ietf.org/html/rfc1424
http://www.rfc-editor.org/rfc/rfc1424.txt
mailto:dee@lkg.dec.com
mailto:crocker@cybercash.com
mailto:jis@mit.edu
http://tools.ietf.org/html/rfc1750
http://www.rfc-editor.org/rfc/rfc1750.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
mailto:GK@ACM.ORG
mailto:chris.newman@sun.com
http://tools.ietf.org/html/rfc3339
http://www.rfc-editor.org/rfc/rfc3339.txt
http://xml.resource.org/public/rfc/html/rfc3339.html
http://xml.resource.org/public/rfc/xml/rfc3339.xml
http://tools.ietf.org/html/rfc3548
http://www.rfc-editor.org/rfc/rfc3548.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5849
http://www.rfc-editor.org/rfc/rfc5849.txt
http://csrc.nist.gov/publications/drafts/800-63-rev1/SP800-63-Rev1_Dec2008.pdf
http://www.w3.org/TR/html401/
http://self-issued.info/docs/draft-jones-json-web-signature-01.html
http://self-issued.info/docs/draft-jones-json-web-signature-01.html
http://jsonenc.info/sig/1.0/


 Nat Sakimura (editor)
 Nomura Research Institute, Ltd.

Email: n-sakimura@nri.co.jp

  
 David Recordon
 Facebook Inc.

Email: dr@fb.com

  
 John Bradley
 Protiviti Government Services

Email: jbradley@mac.com

  
 Breno de Madeiros
 Google Inc.

Email: breno@google.com

  
 Mike Jones
 Microsoft Corporation

Email: Michael.Jones@microsoft.com

  
 Edmund Jay (editor)
 MGI1

Email: ejay@mgi1.com

mailto:n-sakimura@nri.co.jp
mailto:dr@fb.com
mailto:jbradley@mac.com
mailto:breno@google.com
mailto:Michael.Jones@microsoft.com
mailto:ejay@mgi1.com

	OpenID Connect Core 1.0 - draft 05
	Abstract
	Table of Contents
	1.  Requirements Notation and Conventions
	2.  Terminology
	3.  Overview
	4.  Messages
	4.1.  Authorization Endpoint
	4.1.1.  Authorization Request
	4.1.2.  Authorization Response
	4.1.3.  Authorization Error Response
	4.1.3.1.  Error Codes
	4.1.4.  OpenID Request Object
	4.2.  Token Endpoint
	4.2.1.  Access Token Request
	4.2.2.  Access Token Response
	4.2.2.1.  OpenID Token
	4.2.3.  Token Error Response
	4.2.3.1.  Error Codes
	4.3.  UserInfo Endpoint
	4.3.1.  UserInfo Request
	4.3.2.  UserInfo Response
	4.3.3.  UserInfo Error Response
	4.4.  Session Management Endpoints
	4.4.1.  Session Refresh
	4.4.2.  Check Session
	4.4.3.  End Session
	5.  serializations
	5.1.  Query String serialization
	5.2.  JSON Serialization
	6.  Signatures
	7.  Encryption
	8.  Requests and Responses
	9.  Verification
	9.1.  Authorization Request Verification
	9.2.  Authorization Response Verification
	9.3.  UserInfo Request Verification
	9.4.  UserInfo Response Verification
	10.  Extensions
	11.  Security Considerations
	11.1.  Assertion manufacture/modification
	11.2.  Assertion disclosure
	11.3.  Assertion repudiation
	11.4.  Assertion redirect
	11.5.  Assertion reuse
	11.6.  Secondary authenticator manufacture
	11.7.  Secondary authenticator capture
	11.8.  Assertion substitution
	11.9.  Authentication Request Disclosure
	11.10.  Timing Attack
	11.11.  Authentication Process Threats
	12.  IANA Considerations
	12.1.  OAuth Parameters Registry
	12.1.1.  Scope Parameters
	12.1.2.  Authorization Request Parameters
	12.1.3.  Access Token Response Parameters
	13.  Open Issues and Things To Be Done (TBD)
	Appendix A.  Acknowledgements
	Appendix B.  Document History
	14. Normative References
	Authors' Addresses


